Part of the Oxford Instruments Group
扩张

氧化铪有助于将微电子保留在摩尔法轨迹上

Continued reduction in the size of transistor devices has lead to the replacement of silicon oxide by hafnium oxide as gate oxide in MOSFETS in the mid-2000s[i]。氧化铪,高k电介质材料是用硅热力学稳定的少数二元氧化物中的一种。因此,它可以自然地集成在逻辑和存储器设备中。例如,英特尔于2007年宣布,在其处理器中加入了铪基的高k金属大门[II]。这种新的晶体管配方承诺,电力消耗降低,电力泄漏减少,同时提供较低的性能。

In 2011, the ferroelectricity of hafnium oxide was reported[III]。氧化铪的所有批量相具有酰亚胺晶体结构,因此不表现出铁电性。氧化铪在室温下是单斜斜,在2050k上方的四边形时。然而,当在机械包封(“封盖”)的薄膜的形成期间掺杂有氧化硅(“封盖”),氧化铪形成非亚邻对比的晶相,因此预期是铁电[iv]。This ferroelectric phase is orthorhombic, and is formed by the inhibition of the tetragonal to monoclinic transition by mechanical confinement. Ferroelectricity of hafnium oxide potentially leads to interesting devices taking advantage of silicon/ferroelectric junctions. Ferroelectric transistors (FeFETS), for example, show promise as ultra-fast, low-power non-volatile memory, that may eventually compete with current flash technology[v,vi,vii]

氧化铪薄膜表征的挑战是弱压电反应,铁电材料的性能。压电响应力显微镜(PFM)通常需要在接触谐振频率下完成,以利用信号的共振增强[viii]。然而,接触谐振偏移的频率,并且可以引入可以模糊压电反应的地形串扰。

Asylum Research’s proprietaryDual Amplitude Resonance Tracking or DART™ mode追踪接触谐振换档,从而最大限度地减少了地形对测量的影响。以下是Si的Dart™-PFM图像的一些示例:HFO2薄膜清晰地显示极化的压电域。在唤醒循环之前,样品在结晶后,样品在其初始状态下是10nm薄膜。这些数据在安装期间拍摄顾客newCypher S.system.

用Asylum Research Cypher S扫描探针显微镜拍摄氧化铪薄膜的PFM图像

Dart幅度(左)和相位(右)数据覆盖在10nm si的地形表面上:hfo2thin film (3 µm scan size).

飞镖烤瓷的氧化铪薄膜with an Asylum Research atomic force micrscope (AFM)

DART amplitude (left) and phase (right) images of 10 nm Si:HfO2thin film (1.5 µm scan size), with line sections across piezoelectric domains of opposite polarity.

Questions or comments on Notes from the Nanoworld

References:

[i]朱,H.,C. Tang,L.R.C.Fonseca和R. Ramprasad。“基于Hafnia的栅极堆栈的AB Initio模拟的最新进展。”Journal of Materials Science47, no. 21 (2012): 7399-7416.

[II]Intel News Release: “Intel's Fundamental Advance in Transistor Design Extends Moore's Law, Computing Performance: Sixteen Eco-Friendly, Faster and 'Cooler' Chips Incorporate 45nm Hafnium-Based High-k Metal Gate Transistors” (https://www.intel.com/pressroom/Archive/Releases/2007/20071111Comp.htm.的)

[III]Böscke, T. S., J. Müller, D. Bräuhaus, U. Schröder, and U. Böttger. "Ferroelectricity in hafnium oxide thin films." Applied Physics Letters 99, no. 10 (2011): 102903.

[IV] Polakowski,Patrick和JohannesMüller。“未掺杂的铪氧化物的铁电。”应用物理字母106,不。23(2015):232905。

[v] NamLab (Nanoelectronic Materials Laboratory) Website: “Hafnium Oxide Based Ferroelectric Memory (http://www.namlab.de/research/reconfigurable-devices/hafnium-oxide-based-ferroelectric-memory.的)

[vi]Dünkel,S.,M.Trentzsch,R. Richter,P.Moll,C. Fuchs,O. Gehring,M. Majer等。“基于FEFET基超低功耗超快速嵌入式NVM技术,适用于22nm FDSOI及以后。”在电子设备会议(IEDM),2017年IEEE International,PP。19-7。IEEE,2017年。

[vii]特伦茨赫,M.,S.Flachowsky,R. Richter,J.Paul,B. Reimer,D. Neess,S. Jansen等。“基于铁电FET的28nm HKMG超低功耗嵌入式NVM技术。”在电子设备会议(IEDM),2016年IEEE International,PP。11-5。IEEE,2016年。

[viii] Rodriguez, Brian J., Clint Callahan, Sergei V. Kalinin, and Roger Proksch. "Dual-frequency resonance-tracking atomic force microscopy." Nanotechnology 18, no. 47 (2007): 475504.

Sample由ThomasKämpfe在德国德累斯顿德累斯顿弗劳霍夫机构的托马斯·赫姆普

Date:2018年8月23日

作者:Ted Limpoco博士,Asylum Research

类别:应用笔记

Download as pdf

Share

相关资产